

A Case For RHIC-II: Heavy Flavor Physics

Status Report of the RHIC-II Heavy Flavor Working Group

Thomas Ullrich for the HF Group BNL Program Advisory Committee Meeting November 3, 2005

Heavy Flavor Group Conveners: T. Frawley, R. Vogt, TU Web site: http://rhicii-science.bnl.gov/heavy/

Why Quarkonia? – What Can We Learn?

Charmonia: J/ ψ , Ψ ', χ_c

Bottomonia: $\Upsilon(1S)$, $\Upsilon(2S)$, $\Upsilon(3S)$

- ◆ Key Idea: Melting in the plasma
 - Color screening of static potential between heavy quarks:
 - J/ ψ suppression: Matsui and Satz, *Phys. Lett. B* **178** (1986) 416
 - Suppression of states is determined by T_c and their binding energy

	E _{binding} (GeV)
J/ψ	0.64
ψ'	0.05
χ _c	0.2
Ύ(1S)	1.1
Υ(2S)	0.54
Υ(3S)	0.31

Sequential disappearance of states:

- \Rightarrow Color screening \Rightarrow Deconfinement
- \Rightarrow QCD thermometer \Rightarrow Properties of QGP

Quarkonia – Baseline Theory (pp/dA)

- Need properly "normalized" Quarkonia baseline
 - $pp \Rightarrow production baseline$
 - $d+Au \Rightarrow$ cold matter effects (absorption, shadowing)
- pp
 - Color Evaporation Model (CEM)
 - Quarkonium production treated as fraction of all $\overline{Q}Q$ pairs below $\overline{H}H$ threshold
 - CEM taken to NLO (Gavai et al., G. Schuler and R.Vogt)
 - Parameters adjusted to existing data

	Direct production ratio					
J/ψ	0.62					
ψ'	0.14					
χ _{c1}	0.60					
χ _{c2}	0.99					
Ƴ(1S)	0.52					
Ƴ(2S)	0.33					
Υ(3S)	0.20					

Quarkonia – Baseline Theory (pp/dA)

• pA

- Nuclear Absorption
 - Breakup of quarkonia in the final state
 - Depends if produced as color singlet or octet
- Shadowing
 - Modification of PDFs in the nucleus w.r.t. free nucleon
 - NB: y-distributions more sensitive than p_T

R. Vogt, RHIC-II Science Workshop

Quarkonia – Lattice QCD (AA)

Recent developments:

- Heavy Quark potential?
 - Singlet free energy: F₁ (entropy term?)
 - Singlet energy: V₁
- When do states really melt?
 - Neither F_1 nor V_1 are potentials
 - \Rightarrow spectral functions (results consistent with V₁)
 - \Rightarrow J/ ψ melts at 1.5-2.5 T_C

•
$$T_{diss}(\psi') \approx T_{diss}(\chi_c) < T_{diss}(\Upsilon(3S)) < T_{diss}(J/\psi) \approx T_{diss}(\Upsilon(2S)) < T_{diss}(\Upsilon(1S))$$

using F_1 : S. Digal, P. Petreczky, H. Satz, Phys. Lett. B514 (2001) 57; using V_1 : C.-Y. Wong, hep-ph/0408020;

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ'	χ_b'	Υ"
E^i_s [GeV]	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
T_d/T_c	1.1	0.74	0.1 - 0.2	2.31	1.13	1.1	0.83	0.74
T_d/T_c	~ 2.0	~ 1.1	~ 1.1	~ 4.5	~ 2.0	~ 2.0	—	—

500

0

-500

-1000

-1500

600

400

200

0

-200

-400

Collision with thermal gluons, $\langle p \rangle$ ~ 3 T_c can lead to earlier dissociation: dN_{J/\psi}/dt = -N_g $\langle \sigma_{dis} \rangle$

5

Quarkonia – Effects in AA

Feed down:

- Large from χ_c states (30-40% ?)
- Not well measured in hadronic collisions
- Unknown at RHIC energies

Quarkonia – Effects in AA

Feed down:

- Large from χ_c states (30-40% ?)
- Not well measured in hadronic collisions
- Unknown at RHIC energies
- Other sources of quarkonia production
 - Statistical coalescense (thermal production)
 - too small at RHIC larger at LHC ?
 - Dynamic coalescence
 - •coalescence: $\overline{c}+c \rightarrow J/\psi$
 - •recombination: $J/\psi \rightarrow c+c \rightarrow J/\psi$
 - ${\scriptstyle \bullet} \Rightarrow$ narrower y and softer p_{T} distributions
- Quenching at high- p_T (\Rightarrow discussed later)
- Comover absorption

•
$$J/\psi + \pi (\rho) \rightarrow \overline{D}D$$
 (negligible for Υ)

Many effects that need to be understood to extract pure "suppression" mechanism **CHIC-II** Open Heavy Flavor – What Can We Learn?

Open Heavy Flavor Mesons: D⁰, D^{*}, D[±], D_s, B

- Key Idea: Study interaction with hot and dense media
 - Yields
 - Spectra
 - Correlations
- High-p_T suppression \Rightarrow Density of medium, E-Loss mechanism
- Low- p_T flow, spectra \Rightarrow Thermalization ?
 - \Rightarrow Transport properties of the medium
- Charm-Charm, Charm-Hadron, J/ψ-Hadron Correlations:
 - Low- $p_T \implies$ Thermalization ?
 - High- $p_T \implies$ Tomography of medium

Study of heavy flavor ⇒ Properties of QGP (Density, Thermalization)

RHIC-II Open Heavy Flavor – Baseline Theory (pp)

Heavy Quark production is a "hard" process \Rightarrow perturbative QCD

- Calculations on NLO (e.g. R. Vogt et al. hep-ph/0502203) depend on:
 - Quark mass m_c, m_b
 - Factorization scale μ_F (typically $\mu_F = m_T$ or 2 m_T)
 - Renormalization scale μ_R (typically $\mu_R = \mu_F$)
 - Parton density functions (PDF)
 - Fragmentation functions (FF) plays important role
- Fixed-Order plus Next-to-Leading-Log (FONLL)
 - designed to cure large logs for $p_T >> m_q$ where mass is not relevant

Copen Heavy Flavor – Energy Loss in Medium

 $\Delta E \propto \hat{q}L^2$ $\hat{q} \equiv \text{transport coefficient}$

Various Models to describe E-loss in hot medium: BDMPS, GLV, ...

- In vacuum, gluon radiation suppressed at $\theta < m_Q/E_Q$
 - "dead cone" effect
 - implies lower energy loss (Dokshitzer-Kharzeev, ⁹/₅
 '01)
 - energy distribution ω dI/dω of radiated gluons suppressed by angle-dependent factor
 - suppress high-ω tail
- Collisional E-loss: $Qg \rightarrow Qg$, $Qq \rightarrow Qq$
 - dE/dx \propto ln p considered small

(Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003) 10

Chic-II Open Heavy Flavor – Elliptic Flow

- Observed large elliptic flow of light/s quark mesons at RHIC
 - Strong evidence for thermalization
- What about charm?
 - •Naïve kinematical argument: need $m_q/T \sim 7$ times more collisions to thermalize
 - $\bullet v_2$ of charm closely related to R_{AA}

Examples: Van Hees & Rapp, PRC 71, 034907: resonant heavy-light quark scattering via scalar, pseudoscalar, vector, and axial vector D-like-mesons

Chic-II Open Heavy Flavor – Elliptic Flow

- Observed large elliptic flow of light/s quark mesons at RHIC
 - Strong evidence for thermalization
- What about charm?
 - •Naïve kinematical argument: need $m_q/T \sim 7$ times more collisions to thermalize
 - $\bullet v_2$ of charm closely related to R_{AA}

• Examples: Moore & Teeny: Study of diffusion coefficient in QGP, D = T/M η (η drag coefficient), using a Langevin model

RHIC Results – Charm Cross Section

- Study of D mesons (Kπ combinations/event mixing) and non-photonic single electrons (from semileptonic D decays)
 - Cross section 2-4 × larger than predictions from NLO

- D mesons: large background
- Non-photonic electrons: $\sigma_{measured}/\sigma_{cc} \sim 15\%$
- \Rightarrow Need direct measurement of D mesons (via K $\pi)$

RHIC Results – Charm Energy Loss

- Study of non-photonic single electrons (from semileptonic D decays)
 - First evidence of strong suppression of charm at high- p_T
 - Challenge to existing E-loss paradigm (collisional E-loss important?)

Issues:

- Statistics at high- p_T limited, uncertainties due to photonic background
- Cannot deconvolute contributions from charm and bottom
- \Rightarrow Need direct measurement of high-p_T D mesons (via K $\pi)$ and B mesons (via J/ $\psi)$

RHIC Results – Charm Flow

- Study of non-photonic single electrons (from semileptonic D decays)
 - First hint of strong charm elliptic flow for p<2 GeV/c
 - \bullet Measurements from STAR & PHENIX deviate at higher \textbf{p}_{T}

Issues:

- Statistics limited
- Uncertainties due to photonic background
- Large sys errors
- Cannot deconvolute contributions from charm and bottom
- Need direct measurement of D mesons (via K p) v₂

15

• Study of $J/\psi \rightarrow ee$ and $\mu\mu$ in Au+Au and Cu+Cu

- Yield is suppressed compared to that in p+p collisions
- Suppression is larger for more central collisions.
- Suppression beyond that of cold nuclear matter for most central collisions even if $\sigma_{abs} \sim 3$ mb.
- Cold matter effects underpredict the suppression

$J/\psi \text{ nuclear modification factor } R_{AA}$ $\stackrel{\bullet}{\overset{\bullet}} Au + Au |y| \in [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Cu + Cu |y| \in [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y| < [1.2, 2.2] \\ \stackrel{\bullet}{\overset{\bullet}} Au + Au |y$

0.8 0.6 0.4 0.4 0.2 PHENIX preliminary 0 50 100 150 200 250 300 350 400 N_{part}

Issues:

- Lack of statistics
- Only J/ ψ measurement so far
- \Rightarrow Need more statistics and data on Ψ ', χ_{c} , and Υ states

RHIC Results – J/ ψ Suppression

Recombination predicts narrow p_T and rapidity distribution:

- $\langle p_T^2 \rangle$ vs. N_{collisions}
 - Predictions of recombination model match better.
- R_{AA} vs. Rapidity
 - No significant change in rapidity shape compared to p+p result.

Recombination compensates suppression?

Issues:

- Charm rapidity distributions at RHIC are open questions
- Require more data on √s, A dependence

Need more statistics, $J/\psi v_2$

RHIC-II Quarkonia – RHIC-II Goals and Requirements

Physics Motivation	Probes	Studies	Requirements
Baseline	J/ ψ , ψ ', Υ (1S), Υ (2S), Υ (3S) through $\mu\mu$ and ee decay channels	Rapidity $y(x_F)$ and p_T spectra in AA, pA, pp as a function of A, \sqrt{s}	High luminosity and acceptance. High resolution to resolve Y states
Deconfinement & Initial Temperature	J/ψ, ψ', Υ(1S), Υ(2S), Υ(3S)	Melting patterns of quarkonia states	Extract suppression mechanism taking into account: feed down, nuclear absorption, and recombination
Properties of the medium	High-p _T J/ψ	R _{AA} : Dissociation ↔ Quenching	High luminosity
Thermalization &Transport properties of the Medium	J/ψ	J/ ψ flow (v_2) as a function of A, \sqrt{s} Recombination: y and $\langle p_T^2 \rangle$	High luminosity to obtain good statistics in short time (A, \sqrt{s} scans)

RHIC-II Quarkonia – RHIC-II Goals and Requirements

In order to extract the desired suppression signals the following measurements have to be achieved:

Торіс	Studies	Requirements
Nuclear effects shadowing absorption 	Quarkonia in pp, pA: • x_2 , x_F dependence • A dependence • rapidity distributions over wide range	Large y coverage Forward coverage to high x _F
Suppression vs. Recombination	 charm production d_σ/dp_Tdy v₂ of J/ψ p_T dependence of suppression 	High resolution vertex detectors
Contribution from feed down	Measure χ_c at least in pp and pA	Photon detection at mid and forward rapidity, high luminosity, good energy & momentum resolution to minimize background
Quarkonium production	pA: χ_c / J/ ψ A-dependence J/ ψ polarization (?)	As above Large acceptance for $\cos \theta^*$

Open Heavy Flavor – RHIC-II Goals and Requirements

Physics Motivation	Probes	Studies	Requirements
Baseline	D/B mesons, non- photonic electrons	 Rapidity y(x_F) and p_T spectra in AA, pA as a function of A, √s 	High Luminosity High resolution vertex detectors $(c\tau(D) \sim 100-300 \ \mu m)$ High- p_T PID $(D \rightarrow K\pi)$
Thermalization, Transport properties of the medium	D mesons, B? non-photonic electrons (D+B)	Elliptic flow v_2 p_T spectra	as above
Properties of the medium Initial conditions	D, B (B \rightarrow J/ ψ + X) mesons, non- photonic electrons	$R_{AA}(p_T)$, R_{CP} of D , B as a function of p_T for various \sqrt{s}	as above
Properties of the medium Heavy Flavor Production	D mesons, non- photonic electrons	Correlations: • charm-charm • charm-hadron • J/ψ-hadron	HIGH luminosity (eff ² !) Large coverage Trigger ?

Addressing the requirements:

- RHIC-II: increased luminosity (RHIC-II ≈ 40 × RHIC)
 - Note: collision diamond σ = 20 cm at RHIC and σ = 10 cm at RHIC II \Rightarrow gain in usable luminosity is larger than "nominal" increase
- PHENIX & STAR: more powerful upgraded detectors crucial to the Heavy Flavor physics program - completed in mid/near term ~5 years.

STAR:

- DAQ upgrade increases rate to 1 KHz, triggered data has ~ 0 dead time.
- Silicon tracking upgrade for heavy flavor, jet physics, spin physics.
- Barrel TOF for hadron PID, heavy flavor decay electron PID.
- EMCAL + TOF J/ψ trigger useful in Au+Au collisions.
- Forward Meson Detector
- PHENIX:
 - Silicon tracker for heavy flavor, jet physics, spin physics.
 - Forward muon trigger for high rate pp + improved pattern recognition.
 - Nose cone calorimeter for heavy flavor measurements.
 - Aerogel + new MRP TOF detectors for hadron PID.
 - Hadron-blind detector for light vector meson e⁺e⁻ measurements.

RHIC-II – Open Heavy Flavor

- With detector upgrades (both PHENIX and STAR):
 - Dramatically reduce backgrounds for all open charm, open beauty signals using displaced vertex measurement.
 - Separate open charm and beauty statistically using displaced vertex.
 - Separate $B \rightarrow J/\psi$ from prompt J/ψ using displaced vertex.
- And with the luminosity upgrade:
 - Extend open charm and beauty R_{AA} measurements to high p_T.
 What is the energy loss well above the thermalization region?
 - Measure D & semileptonic charm and beauty decay v_2 to high p_T . See the transition from thermalization to jet energy loss for charm.
 - Measure open charm correlations with open charm or hadrons.

RHIC-II - Quarkonia

With detector upgrades:

- J/ψ from B decays with displaced vertex measurement (both).
- Reduce $J/\psi \rightarrow \mu\mu$ background with forward μ trigger in PHENIX.
- Improve mass resolution for charmonium and resolve Υ family.
- See γ in forward calorimeter in front of muon arms (PHENIX) and in FMD in STAR
- And with the luminosity upgrade:
 - $J/\psi R_{AA}$ to high p_T . Does J/ψ suppression go away at high p_T ?
 - $J/\psi v_2$ measurements versus p_T . See evidence of charm recombination?
 - ΥR_{AA} . Which Upsilons are suppressed at RHIC?
 - Measure $\chi_c \rightarrow J/\psi + \gamma$ R_{AA}. Ratio to J/ψ ?
 - Measure Ψ R_{AA} . Ratio to J/ψ ?
 - Measure $B \rightarrow J/\psi$ using displaced vertex independent B yield measurement, also get background to prompt J/ψ measurement.

RHIC-II - Heavy Flavor Yields

All numbers are first rough estimates (including trigger and reconstruction efficiencies) for 12 weeks physics run ($\int L_{eff} dt \sim 18 \text{ nb}^{-1}$)

Signal	RHIC Exp.	Obtained	RHIC I (>2008)	RHIC II	LHC/ALICE+
$J/\psi \rightarrow e^+e^-$	PHENIX	~800	3,300	45,000	9,500
$J/\psi \longrightarrow \! \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$		~7000	29,000	395,000	740,000
Υ → e ⁺ e ⁻	STAR	-	830	11,200	2,600
$\Upsilon \rightarrow \mu^{+}\mu^{-}$	PHENIX	-	80	1,040	8,400
$B \rightarrow J/\psi \rightarrow e^+e^-$	PHENIX	-	40	570	N/A
$B{\rightarrow}J/\psi{\rightarrow}\mu^+\mu^-$		-	420	5,700	N/A
$\chi_{c} \rightarrow e^{+}e^{-}\gamma$	PHENIX	-	220	2,900*	N/A
$\chi_c \rightarrow \mu^+ \mu^- \gamma$		-	8,600	117,000*	N/A
D→Kπ	STAR	~0.4×10 ⁶ (S/B~1/600)	30,000**	30,000**	8000

* Large backgrounds, quality uncertain as yet

** Running at 100 Hz min bias

T. Frawley, PANIC'05, RHIC-II Satellite Meeting

⁺ 1 month (= year), P. Crochet, EPJdirect A1, a (2005) and private comm.

Summary & Conclusions

- Heavy Flavor Physics at RHIC teaches us about:
 - Deconfinement
 - Thermalization
 - Transport properties of the medium
- Heavy Flavor Physics at RHIC is just at the beginning
 - Already the first glimpses points to new physics
 - Charm suppression at high-p_T
 - J/ψ: suppression + recombination
 - Cross sections larger than NLO predictions
- RHIC-II luminosity & detector upgrades dramatically expand capabilities and thus our understanding
 - Study sequential suppression of many quarkonium states
 - Evaluate effects: feed down, absorption, recombination
 - Study D, B production and suppression in the medium
 - Study thermalization via charm and quarkonium flow
- Still challenging:
 - Correlation measurements, χ_b impossible?