Questions

Who is the target of the JDL?

The target is an admin/computer skilled person

Should have complete control over the way the job is submitted

Allows putting more requirements in the description
Might want a certain visibility of the system underneath; for example, specify directly which batch queue to specify, the priority
The target is the standard physicist
Shouldn’t have complete control over the way the job is submitted. For example, job priority should be decided by the system that interprets the JDL, not the user. The admin would need some parameters to assign priorities/queues depending on user privileges, job characteristics…
Minimal requirements in the description: the system has to provide sensible defaults

Should try not to provide too many options confusing to the user
Would the Resource Broker of an experiment send or receive a job specification in such JDL?

We can also rephrase it this way. When creating any language we are assuming a model. Are we making a model of the end user jobs or of the technologies underneath?
The resource broker sends (1st case)
JDL just describes a job that can be directly submitted to a general purpose submission system, so the model underneath must be taken from the GRID services available (i.e. no experiment specifics at that point)

JDL would basically be a wrapper or extension of RSL, or Condor class-ads or bsub syntax. Why not use something that already exists, or extend them as little as we need?
The resource broker sends (2nd case)

The resource broker should submit to the GRID, therefore use JDL defined by Globus (RSL). But, to put together commonalities, we don’t submit directly to Globus. We submit to an intermediate resource broker that uses this JDL. If an experiment has no need for a custom resource broker, it uses directly this JDL. If the experiment needs to put some specifics in the JDL, it will put its resource broker between the user and this HEP resource broker, like this: 1. user-RB; 2. RB-HEPRB; 3. HEPRB-GRID

In this framework, the JDL depends on what this common resource broker will be capable of doing.

The resource broker receives

In this framework, the resource broker is what receives the request. Therefore the JDL has to allow for an extension specific mechanism. The resource broker, in this case, would send directly to Globus (RSL)
It would make sense to have a parallel Resource Broker project, that each experiment would be able to modify and tailor to their needs. Experiments would have the parsing and the job submission already done. The only thing they would modify is just the policy with which jobs are assigned to resources. This common project will also provide a basic implementation for those smaller experiment in which there is no need to make extensions.

Will the object that receives the request make any decisions that need to be communicated to the job?

If the JDL will include file catalog queries, or input specification through logical file names, a specification must exists to report those decisions back to the job

In STAR we have a mechanism for which the resource broker will divide a request on a big dataset on a set of smaller requests. This requires the program to be submitted to follow some specification. Are similar mechanisms planned to be made common across experiment? 

Will the JDL include metadata queries?

Users in end will specify queries on the metadata (ex. I want to work on all the events with the following characteristics: Gold-Gold collision, …).

If a standard metadata query language is not available, metadata queries will have to be opaque to the JDL specification. The query should be passed to an experiment specific catalog that would return a list of files. Specifications for this would be needed.

Gabriele Carcassi

